Approximate computation of zero-dimensional polynomial ideals
نویسندگان
چکیده
منابع مشابه
Approximate computation of zero-dimensional polynomial ideals
The Buchberger-Möller algorithm is a well-known efficient tool for computing the vanishing ideal of a finite set of points. If the coordinates of the points are (imprecise) measured data, the resulting Gröbner basis is numerically unstable. In this paper we introduce a numerically stable Approximate Vanishing Ideal (AVI) Algorithm which computes a set of polynomials that almost vanish at the gi...
متن کاملNumerical Computation of Gröbner Bases for Zero-dimensional Polynomial Ideals
It is well known that in the computation of Gröbner bases an arbitrarily small perturbation in the coefficients of polynomials may lead to a completely different staircase even if the roots of the polynomials change continuously. This phenomenon is called pseudo singularity in this paper. We show how such phenomenon may be detected and even “repaired” by adding a new variable and a binomial rel...
متن کاملSemidefinite Characterization and Computation of Zero-Dimensional Real Radical Ideals
For an ideal I ⊆ R[x] given by a set of generators, a new semidefinite characterization of its real radical I(VR(I)) is presented, provided it is zero-dimensional (even if I is not). Moreover we propose an algorithm using numerical linear algebra and semidefinite optimization techniques, to compute all (finitely many) points of the real variety VR(I) as well as a set of generators of the real r...
متن کاملComprehensive Border Bases for Zero Dimensional Parametric Polynomial Ideals
In this paper, we extend the idea of comprehensive Gröbner bases given by Weispfenning (1992) to border bases for zero dimensional parametric polynomial ideals. For this, we introduce a notion of comprehensive border bases and border system, and prove their existence even in the cases where they do not correspond to any term order. We further present algorithms to compute comprehensive border b...
متن کاملUnivariate Representat ion of Zero - dimensional Ideals
To give an efficiently computable representation of the zeros of a zero-dimensional ideal I, Rouillier (1996) introduced the rational univariate representation (RUR) as an extension of the generalized shape lemma (GSL) proposed by Alonso et al. (1996). In this paper, we propose a new method to compute the RUR of the radical of I, and report on its practical implementation. In the new method, th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Symbolic Computation
سال: 2009
ISSN: 0747-7171
DOI: 10.1016/j.jsc.2008.11.010